Since furin is highly expressed in lungs, an enveloped virus that infects the respiratory tract may successfully exploit this convertase to activate its surface glycoprotein (Bassi et al., 2017; Mbikay et al., 1997). Before the emergence of the 2019-nCoV, this important feature was not observed in the lineage b of betacoronaviruses. However, it is shared by other CoV (HCoV-OC43, MERS-CoV, MHV-A59) harbouring furin-like cleavage sites in their S-protein (Fig. 2; Table 1), which were shown to be processed by furin experimentally (Le Coupanec et al., 2015; Mille and Whittaker, 2014). Strikingly, the 2019-nCoV S-protein sequence contains 12 additional nucleotides upstream of the single Arg↓ cleavage site 1 (Fig. 1, Fig. 2) leading to a predictively solvent-exposed PRRAR↓SV sequence, which corresponds to a canonical furin-like cleavage site (Braun and Sauter, 2019; Izaguirre, 2019; Seidah and Prat, 2012). This furin-like cleavage site, is supposed to be cleaved during virus egress (Mille and Whittaker, 2014) for S-protein “priming” and may provide a gain-of-function to the 2019-nCoV for efficient spreading in the human population compared to other lineage b betacoronaviruses. This possibly illustrates a convergent evolution pathway between unrelated CoVs. Interestingly, if this site is not processed, the S-protein is expected to be cleaved at site 2 during virus endocytosis, as observed for the SARS-CoV.