We also, however, identified a role for Sea3 that could not be compensated for by the continued presence of Sea2 and Sea4, which is in the recovery following DNA damage, including at telomeres (Figure 1, Figure 2, and Figure S3). Additional evidence supports the possibility that members of the SEACAT epistasis group have disparate functions. For example, although Sea2 and Sea3 are structurally similar and both genetically interact with cdc13-1 (Addinall et al. 2008, 2011), Sea3 has an RWD domain, structurally similar to an E2 ubiquitin conjugating enzyme, which is not present in Sea2 (Dokudovskaya et al. 2011). Additionally, sea2Δ homozygous mutants have a sporulation defect not observed with deletion of other SEA complex member genes [data not shown and (Briza et al. 2002)]. Together, these results suggest that individual components of the SEACAT epistasis group may function in different circumstances to regulate TORC1 signaling.